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 Abstract – The success of a landed space exploration mission 
depends largely on the final landing site. Factors influencing site 
selection include safety, fuel-consumption, and scientific return. 
This paper addresses the problem of selecting the best available 
landing site based on these factors in real-time during 
autonomous spacecraft descent onto a planetary surface. The 
problem is modeled probabilistically using Bayesian Networks 
(BNs). BNs provide a means of representing the causal 
relationships between variables that impact the quality of a 
landing site. The final landing site is determined via probabilistic 
reasoning based on terrain safety derived from on-board sensors, 
available fuel based on spacecraft descent dynamics, and regions 
of interest defined by mission scientists. 
 
 Index Terms – Autonomous spacecraft, safe landing, terrain 
characterization, Bayesian Networks. 
 

I.  INTRODUCTION 

 Landing sites for space exploration missions have 
historically been determined off-line by scientists and 
engineers based on aerial imagery obtained from orbiters. The 
selection process involves a variety of criteria including 
safety, engineering, and science factors [1]. For instance, in 
the case of the Mars Exploration Rovers (MER) mission, as 
many as 185 possible landing sites were first identified before 
being narrowed down to 6 high priority science sites. Among 
the concerns that factored into the selection process were 
horizontal winds and wind shear, slopes, and rocks on the 
surface [2]. In the end, two landing sites were selected—one 
for each rover. 

Although, scientific return is a fundamental part of any 
space exploration mission, ultimately, the dominating concern 
is safety. Consequently, landing sites with high scientific 
potential are often eliminated from consideration. For this 
reason, a major effort is underway to equip the next 
generation of unmanned spacecraft with onboard hazard 
detection and avoidance capabilities in order to reach 
locations of higher scientific interest while meeting the 
necessary safety criteria. In particular, the effort aims at 
enabling autonomous soft-landing. 
 Considerable work has been done in the area of sensor-
based autonomous landing. Landmark detection is of 

particular importance for spacecraft navigation [3] and 
landing [4]. In some cases, known landing hazards, such as 
craters [4,5], are used as landmarks for both position 
estimation and safe landing. In other cases, terrain features, 
such as slope and roughness, are used to determine landing 
safety [6]. Prior research has generally focused on the use of a 
single sensor, such as a camera [7] or LIDAR [8]. The work 
presented here focuses first, on the use of multiple 
heterogeneous on-board sensors and second, on the use of 
reasoning techniques to infer safety and incorporate 
engineering and science factors in the selection of a final 
landing site. 

 The use of a reasoning engine for terrain 
characterization using multiple sensors was first proposed in 
[6]. Terrain features extracted from a RADAR, LIDAR, and 
camera were mapped to a multi-level safety scale using fuzzy 
logic. However, in this case the problem is modelled 
probabilistically using Bayesian Networks (BNs). BNs not 
only provide a framework for terrain safety assessment, but 
also for the selection of an optimal landing site based on 
additional critical factors, which has not been formally 
addressed before. 

BNs have many attractive characteristics that make them 
particularly well suited to this problem. Because BNs model 
the relationships between causes and effects, they can be used 
for both inference and causal reasoning. In a BN, the safety of 
the terrain can be inferred from features extracted from the on-
board sensors. In addition, by incorporating other factors, such 
as fuel consumption and scientific return, a BN can also be 
used to determine the best landing site using causal reasoning. 
In this paper, a Bayesian framework for landing site selection 
is presented and discussed. In addition, experiments are 
conducted using synthetic planetary terrains in order to 
simulate the landing site selection during spacecraft descent. 

II.  TERRAIN SAFETY 

A. Onboard Sensors 
 A combination of active and passive sensors is used for 
terrain characterization during descent: RADAR, LIDAR, and 
camera, as in [6,9]. The motivation for using multiple sensors 



 

is twofold: 1) to increase robustness and 2) to enrich the 
feature set.  
 Each sensor has different physical characteristics, such as 
field of view, resolution, and operating range. The limitations 
of a particular sensor may be compensated by the strengths of 
another. In addition, since the sensors have different operating 
ranges, the fusion of sensory information is grouped into three 
tiers, as shown in Table I. 

 
TABLE I 

TIERED SENSOR OPERATION 
Tier Range Operational Sensor(s) 

1 10km – 7km Radar 
2 7km – 1km Radar + Camera 
3 1km - Touchdown Radar + Camera + Lidar 

B. Terrain Features 
 A combination of large scale and small scale topographic 
features are used to predict terrain safety. The small scale 
features are obtained from RADAR and LIDAR range data. 
Slope and roughness features can be extracted from the range 
data using a plane-fitting technique. 
 Let z = ax + by + c represent a plane in ℜ3. The plane 
parameters a, b, and c can be estimated from the range data 
using regression, such as the Least Median of Squares 
(LMedSq) technique [8]. The slope is obtained by calculating 
the angle formed by the estimated plane normal and the z-axis: 
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where a and b are the parameters of the best-fitting plane at 
location (x,y). The fitting error between the plane and the 
sensor range provides a measure of the local terrain 
roughness: 
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 A novel aspect of this work is that in addition to local 
terrain features, known landing hazards such as craters and 
rocks are explicitly detected and used in the reasoning 
process. These are obtained from camera imagery using 
detection algorithms. The crater detection algorithm uses 
edges and shadow patterns to identify candidate craters [4]. 
The candidate craters are parameterized by fitting an ellipse to 
the crater boundary. Let x0,i, y0,i, ai, bi, and φi be the ellipse 
center x-coordinate, center y-coordinate, semi-major axis 
length, semi-minor axis length, and rotation angle, 
respectively, for the ith detected crater. The presence of 
craters is defined as: 
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where x and y are points in a coordinate system rotated by φi 
and translated by x0,i and y0,i.  
 At lower altitudes, rocks and boulders are visible and are 
detected using the algorithm described in [10]. Rocks are 

detected in descent imagery by locating and characterizing 
shadows. The shape of the rock is determined using a 
hemispherical model and the projection of shadows based on 
the known sun angle. The presence of rocks is defined as: 
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where R is the set of pixel locations in the image identified as 
rocks. Crater and rock detection results are shown in Figure 1. 
 
 

  

  
 

Fig. 1 Craters (a) and rocks (b) detected from camera imagery. 

C. Bayesian Safety Assessment 
 Predicting terrain safety from a set of noisy sensor 
measurements is not a deterministic problem. For this reason, 
a probabilistic framework is proposed here. Specifically, 
Bayesian Networs (BNs) [11] are used to model statistical 
dependencies and infer terrain safety from features. 
 BNs are directed acyclic graphs (DAG) where the nodes 
represent variables and the links between nodes represent 
causal dependence. The direction of a link indicates causality, 
and thus a dependence relationship. Nodes that exist at the 
same level are considered conditionally independent. 
The state of the terrain T can be inferred from the terrain 
features f using Bayes’ rule: 
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If the N features are fully dependent, then an N-dimensional 
distribution is needed to evaluate Eq. (5). If the features are 
assumed to be conditionally independent, the N-dimensional 
distribution is reduced to N 1-dimensional distributions (naïve 
Bayes). Although independence is often difficult to assess, it 
has been shown that for most classification problems, the 
assumption is adequate and does not lead to increased error 
[12]. Applying conditional independence reduces Eq. (5) to: 
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Eq. (6) can be represented graphically, as shown in Figure 2. 
The posterior probability P(T k | f )∈[0,1] provides a 
continuous-valued measure of certainty that the terrain is safe. 

 
 

Fig. 3 Terrain safety assessment during descent onto a planetary surface at 8km (a), 4km (b), and 1km (c). 
 
 
Eq. (6) can be represented graphically, as shown in Figure 2. 
The posterior probability P(T k | f )∈[0,1] provides a 
continuous-valued measure of certainty that the terrain is safe. 

 
Fig. 2 Naïve Bayes graphical structure for terrain safety assessment. 

 
 Example results using Bayesian terrain safety assessment 
are shown in Figure 3. The terrain safety is shown at three 
altitudes during descent (onto the same terrain). For display 
purposes, the continuous probability P(T | f ) is mapped to four 
levels of safety: highly-unsafe (HU), moderately-unsafe (MU), 
moderately-safe (MS), and highly-safe (HS), which are shown 
as green, yellow, orange, and red, respectively. (The same 
color scheme is used throughout the paper.)  

 IV.  ENGINEERING FACTORS 

 Although terrain safety is of paramount importance in 
landing site selection, other factors must also be considered. 
During autonomous spacecraft descent, retargeting operations 
are performed in order to avoid landing hazards and reach the 
nominal landing site. However, the reachable terrain is 
constrained by the spacecraft’s descent trajectory, velocity and 
available fuel. Using ballistic analysis, it was shown in [13] 
that the reachable terrain (landing footprint) is bounded by the 
ellipse 
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The semi-major axis a and semi-minor axis b of the bounding 
ellipse are given by 
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where ΔV is the allowable change in velocity based on fuel 
allocation, Δt is the time to impact, vH is the horizontal 
velocity, m is spacecraft mass, and E is energy, [13]. It goes 
without saying that the landing site must be within the 
reachable boundary. 
 Figure 4 shows estimated landing footprints at various 
points during descent. As shown, the ballistic trajectory begins 
with an initial horizontal velocity. The landing ellipse then 
changes dramatically after a re-targeting maneuver is applied. 
The position of the spacecraft during descent is shown as a red 
circle and the corresponding landing ellipse is shown in blue. 

 
 

Fig. 4 Estimated landing footprint using ballistic analysis. 
 
 In the Bayesian framework, the landing footprint is used 
to exclude regions of the terrain that are unreachable. Let F be 
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a random variable indicating fuel sufficiency. In the binary 
case, the fuel is either sufficient or insufficient to reach a 
particular point on the terrain. However, such a representation 
may not be adequate since the estimate of the landing 
footprint (and thus fuel sufficiency) is subject to error. 
Specifically, the landing footprint estimate using ballistic 
analysis has a 20% margin of error [12]. One alternative is to 
shrink the landing ellipse by 20%. Another alternative is to 
model F as a ternary discrete random variable. In this case, 
points beyond the ellipse boundary are unreachable and points 
within 20% of the boundary are marginally reachable; all 
others are reachable. An example landing ellipse is overlaid 
on a terrain in Figure 5a. Reachable, marginally reachable, 
and unreachable points are shown in green, yellow, and red, 
respectively. 

V.  SCIENCE FACTORS 

Landing site selection for a space exploration mission is 
generally a compromise between safety and scientific return. 
When safety cannot be guaranteed, a potential site must be 
discarded—regardless of its potential scientific impact. 
Determining areas of high scientific potential is a laborious 
process that involves numerous considerations beyond the 
scope of an on-board reasoning system. It is, however, 
possible to integrate the scientists’ preferred sites in order to 
influence the on-board site selection. Thus, for instance, the 
scientists may pre-select multiple potential sites that can be 
used in conjunction with the on-board terrain safety 
assessment in order to select the best site during descent. Such 
a scenario is considered here. 

Scientists select multiple points of interest (x0,i,y0,i) in the 
terrain. The ith region of interest is a circular area centered at 
(x0,i,y0,i) with a radius ri: 
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The regions of scientific interest may or may not be ranked. If 
the sites are ranked, the ranking may be relative to other sites 
or based on a scale of interest. The general framework 
proposed here can account for any of these scenarios. In this 
paper, the ranking is based on level of interest. During the site 
selection process, scientists assign a score to each site based 
on the potential for scientific return. Thus, it is possible for 
multiple sites to have the same score. 

At the point of entry, all pre-selected locations are 
reachable. As the terrain safety is assessed, the site that best 
combines safety, engineering, and scientific criteria is used for 
re-targeting. The process is done repeatedly during descent 
until arriving at a final selected landing site. Figure 5b shows 
an example terrain with three regions of interest, each with a 
particular science ranking. In this case, three different science 
levels (or rankings) are used: high (shown in green), medium 
(shown in yellow), and low (shown in orange). A fourth level 
represents zero scientific interest (shown in red). 

 

 
Fig. 5 Reachable (a) and scientifically interesting (b) regions of the terrain. 

VI.  LANDING SITE SELECTION 

 As discussed earlier, during spacecraft descent, the terrain 
safety is determined based on features extracted from the on-
board sensors. Based on safety alone, a landing site could be 
selected by choosing the region of the terrain with maximum a 
posteriori probability P(T | f ). However, if the spacecraft 
cannot reach the selected site or if it is of minimal scientific 
interest, the selection is meaningless.  Thus, engineering and 
science factors must be combined with terrain safety in order 
to select the landing site. Based on causal relationships 
between these factors, a BN can be constructed for landing 
site selection, as shown in Figure 6. 

 

 
Fig. 6 BN for landing site selection. 

 
The L node in Figure 6 represents the quality of the landing 
site. The T, F, and S nodes represent terrain safety, fuel 
consumption, and scientific interest, respectively. Noting that 
nodes at the same level in a BN are conditionally independent, 
the joint probability encoded by the BN in Figure 6 can be 
written as: 
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As can be seen, the bottom portion of the BN structure in 
Figure 6 is the same as the naïve Bayes structure for terrain 
safety. 
 For landing site selection, the quantity of interest is 
P(L | T , F , S ). This probability can be determined using 
causal (or top-down) reasoning. Let q represent the landing 
quality a point on the terrain can take on. The quantity 
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P(L = q | T , F , S ) represents the probability that the landing 
site has quality level q, given terrain safety, fuel sufficiency, 
and scientific interest. The expected quality of a potential site 
is 
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where E(⋅) is the expectation operator. The best landing site l* 

is the point on the terrain with the highest expected landing 
quality: 
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where i=1,…,M and M is the number of possible landing sites 
on the terrain. 

VII.  EXPERIMENTS 

A. Simulation 
 In order to evaluate the proposed approach, a series of 
experiments were performed using DSENDS, a high-fidelity 
dynamics and spacecraft simulator for entry, descent and 
landing [14]. Also, a suite of Digital Elevation Maps (DEMs) 
representing a variety of planetary terrains was created. The 
terrains are generated using a fractal model. Hills, craters, and 
rocks are added using appropriate models to ensure realism. 
Features are extracted from these DEMs using (RADAR, 
LIDAR and camera) sensor models while simulating 
spacecraft descent in DSENDS. 

B. Supervised Learning 
 A supervised approach is used to learn the distributions in 
the Bayesian framework. Safety ground truth is obtained by 
estimating the final pose of the spacecraft at every point on the 
terrain DEM. In addition, rocks and craters are automatically 
deemed unsafe. A set of 10 different DEMs were used—each 
representing a different planetary landscape. Training for the 
terrain safety assessment and landing site selection is 
performed using the leave-one-out approach where the test 
case is left out and the training is performed on the remaining 
cases. Each cell in the DEM is treated as an independent 
observation. It should also be noted that three different 
classifiers are trained, one for each descent tier (see Table I). 
Roughly 10 frames of sensor data are captured in each tier. 
 The features, f, are a combination of discrete and 
continuous random variables. Specifically, the craters and 
rocks are discrete and the slope and roughness are continuous. 
A Gaussian model is used for the continuous features. The 
likelihood P(f i | T ) was obtained using maximum likelihood 
estimation. 

C. Results 
 Landing site selection results are shown in Figure 7. The 
safety assessment is overlaid on each terrain. The landing 
footprint is shown as a dashed ellipse and the sites of 
scientific interest are shown as solid ellipses. The sites of 
scientific interest were not selected by actual scientists—they 
are only meant for evaluation purposes. Each site of scientific 

interest is centered about the original point selected by a 
scientist and shows a broad area with a circular radius of 
100m. The science ranking is indicated by a corresponding H 
(high), M (medium), or L (low). The final selected landing site 
is shown with a black hash mark. (An arrow is also used for 
clarity.) 
 The results in Figure 7 indicate that the proposed 
approach selects the site that best optimizes all three key 
factors: safety, fuel, and science. For instance, in Figure 7d, 
there are two regions of high scientific interest. However, one 
of these regions lies near the boundary of the fuel ellipse. 
Thus, the selected site is chosen from the other region of high 
interest. As expected, the location of this landing site is 
located near the boundary of the region—away from unsafe 
areas. 

V.  CONCLUSIONS AND FUTURE WORK 

 This paper described a probabilistic approach to landing 
site selection during autonomous spacecraft descent. It was 
shown that BNs can adequately model a variety of criteria, 
including terrain safety, fuel consumption, and scientific 
interest, which can be used to determine the best landing site. 
The final landing site is accurately selected based on prior 
knowledge supplied by scientists, the reachable terrain based 
on descent dynamics, and the on-board safety assessment 
engine. Plans for future work include incorporating principles 
of probabilistic reasoning over time as well as dynamic 
registration of active and passive sensors. This will allow for 
continuous reasoning in arbitrary descent paths with multiple 
re-targeting operations. In addition, the proposed approach 
will be compared with a similar one based on principles of 
fuzzy reasoning.  
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Fig. 7 Final landing sites selected for six different terrains. The dashed ellipse represents the landing footprint (reachable area) and the solid ellipses represent 
regions of scientific interest. The selected sites are shown with a hash mark (for clarity an arrow also indicates each site).
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